Multi-associative neural networks and their applications to learning and retrieving complex spatio-temporal sequences
نویسنده
چکیده
Based on the previous work of a number of authors, we discuss an important class of neural networks which we call multi-associative neural networks (MANNs) and which associate one pattern with multiple patterns. As a computationally efficient example of such networks, we describe a specific MANN, that is, a multi-associative, dynamically generated variant of the counterpropagation network (MCPN). As an application of MANNs, we design a general system that can learn and retrieve complex spatio-temporal sequences with any MANN. This system consists of comparator units, a parallel array of MANNs, and delayed feedback lines from the output of the system to the neural network layer. During learning, pairs of sequences of spatial patterns are presented to the system and the system learns-to associate patterns at successive times in sequence. During retrieving, a cue sequence, which may be obscured by spatial noise and temporal gaps, causes the system to output the stored spatio-temporal sequence. We prove analytically that this system is capable of learning and generating any spatio-temporal sequences within the maximum complexity determined by the number of embedded MANNs, with the maximum length and number of sequences determined by the memory capacity of the embedded MANNs. To demonstrate the applicability of this general system, we present an implementation using the MCPN. The system shows desirable properties such as fast and accurate learning and retrieving, and ability to store a large number of complex sequences consisting of nonorthogonal spatial patterns.
منابع مشابه
معرفی شبکه های عصبی پیمانه ای عمیق با ساختار فضایی-زمانی دوگانه جهت بهبود بازشناسی گفتار پیوسته فارسی
In this article, growable deep modular neural networks for continuous speech recognition are introduced. These networks can be grown to implement the spatio-temporal information of the frame sequences at their input layer as well as their labels at the output layer at the same time. The trained neural network with such double spatio-temporal association structure can learn the phonetic sequence...
متن کاملHeteroassociations of spatio-temporal sequences with the bidirectional associative memory
Autoassociations of spatio-temporal sequences have been discussed by a number of authors. We propose a mechanism for storing and retrieving pairs of spatio-temporal sequences with the network architecture of the standard bidirectional associative memory (BAM), thereby achieving hetero-associations of spatio-temporal sequences.
متن کاملLearning and Retrieving Spatio-Temporal Sequences with Any Static Associative Neural Network
The purpose of the present paper is to report on the design of a general system that is capable of learning and retrieving spatio-temporal sequences using any static associative neural networks (ANN’s), including both autoassociative and heteroassociative neural networks. This artificial neural system has three major components: a voting network, a parallel array of ANN’s, and delayed feedback ...
متن کاملSpatio-Temporal Sequence Processing with the Counterpropagation Neural Network - Systems, Man and Cybernetics, 1996., IEEE International Conference on
We present a system that is capable of learning and retrieving spatio-temporal sequences using the forward-only counterpropagation neural network (FOCPNN). This artificial neural system has comparator units, a parallel array of FOCPNNs, and delayed feedback lines from the output of the system to the FOCPNN layer. The system has separate Conditioned Stimulus (CS) input channel and Unconditioned ...
متن کاملCrop Land Change Monitoring Based on Deep Learning Algorithm Using Multi-temporal Hyperspectral Images
Change detection is done with the purpose of analyzing two or more images of a region that has been obtained at different times which is Generally one of the most important applications of satellite imagery is urban development, environmental inspection, agricultural monitoring, hazard assessment, and natural disaster. The purpose of using deep learning algorithms, in particular, convolutional ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
دوره 29 1 شماره
صفحات -
تاریخ انتشار 1999